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1. Introduction
Flavor-Chiral Symmetries of QCD at low T

chiral anomaly
(explicit breaking)

spontaneous breaking of
chiral symmetry

flavor

deconfinement (QGP)

low T high T

U(Nf )L ⊗ U(Nf )R U(1)B ⊗ S(Nf )L ⊗ SU(Nf )R U(1)B ⊗ S(Nf )V

QCD at high T

restoration of chiral symmetry

U(1)B ⊗ S(Nf )V U(1)B ⊗ S(Nf )L ⊗ SU(Nf )R

phase transition

Questions in this study

1. Constraints to eigenvalue density: 

2. Constraint to singlet susceptibility: 
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Previous studies

Cossu et al. (JLQCD11), Overlap
Topological susceptibility and axial symmetry at finite temperature Guido Cossu
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Figure 2: Spectral density of the overlap Dirac operator for Nf = 2. The several b s were isolated to
emphasize the mass dependence of the density. Zero counting of eigenvalues is intended on the left when
line stops.

the correlators of meson operators in all the channels looking for their degeneracy in the chiral
limit, signal of effective restoration of both chiral and axial symmetry. We found evidence of this
restoration, corroborated also by the spectral density analysis that exhibits a gap in the chiral limit
at temperatures above > 192 MeV, in the current data set.

We can currently fairly say that we have clear evidence of U(1)A effective restoration in a
region just above the chiral phase transition in two flavors QCD. The next step is narrowing the
region of uncertainty about the temperature when the gap starts opening. In a forthcoming paper in
preparation a complete analysis and the newly collected data will be presented.
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Dirac Eigenvalue Spectrum at Finite Temperature Using DWF Zhongjie Lin
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Figure 4: Dirac eigenvalue spectrum for the T = 150−200 MeV ensembles. Here the temperature is lowest
in the upper left and largest in the lower right. The chiral symmetry breaking density of near zero eigenvalues
disappears rapidly with increasing temperature and for the two highest temperature cases there appears to
be a gap with very few eigenvalues just above zero. The magnified inset in these two cases show some near
zero eigenvalues and a suggestive zero mode peak located at Λ= mf +mres
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Eigenvalue distribution of the Dirac operator at finite temperature with (2+1)-flavor . . . H. Ohno
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Figure 2: The eigenvalue density above Tc. Plus, cross, asterisk, square, circle, triangle, and downward
triangle symbols indicate ρ(λ ) at T =173.0, 177.7, 188.7, 210.6, 239.7, 275.9, and 331.6 MeV, respectively.
The right figure shows a logarithmic plot of the same data for the small λ region. All of the data points for
T = 331.6 MeV are outside of the region shown.

universal scaling function fG(z) as
M = h1/δ fG(z) , (4.1)

with z ≡ t/h1/βδ , where h and t are scaling variables corresponding to a symmetry breaking field
and temperature, respectively, and β and δ are critical exponents. In QCD 〈  ψψ〉 and the (light)
quark mass m are regarded as M and h, respectively. Thus one has the relation

〈  ψψ〉 ∼ m1/δ fG(z) . (4.2)

On the other hand, in the infinite volume limit, 〈  ψψ〉 can be obtained from the eigenvalues of
the Dirac operators as

〈  ψψ〉=−
∫ ∞

0
dλ

2mρ(λ )
λ 2 +m2 . (4.3)

Assuming ρ(λ )∼ Aλα , Eq. (4.3) can be rewritten in the limit m→ 0 as

〈  ψψ〉=−mα
∫ ∞

0
d  λ

2A  λα
 λ 2 +1

, (4.4)

with  λ ≡ λ/m. Thus, by comparing (4.2) to (4.4), α = 1/δ would be expected at Tc in the chiral
limit and α should have a value close to 1/δ for a small enough quark mass and near Tc.

To test this expectation, we fit the eigenvalue density around Tc to the Ansatz ρ(λ ) = Aλα .
Here we set the fit range as [0,λmax]. Since the part of ρ(λ ) with large λ is suppressed due to us
having calculated only a fixed number of low-lying eigenvalues per configuration, the largest λ in
the region without such a suppression effect is chosen as λmax.

Figure 3 shows the temperature dependence of the fit parameters α and A. α increases mono-
tonically as the temperature increases and it has a value close to 1/δ for either the O(2) or O(4)
universality class2 at a temperature not more than 10 MeV below the pseudocritical temperature
for both ml/ms = 1/20 and 1/40. Since we expect that α = 1/δ at Tc only in the chiral limit, the

21/δ for the O(2) and O(4) universality classes are too similar to be distinguishable within our numerical accuracy.
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Figure 4. The quantity ω which directly mea-
sures the strength of anomalous symmetry break-
ing plotted versus β. On the left side results for
ma = 0.01 are shown while on the right, results
for ma = 0.01 and 0.025 are compared at β = 5.3
and 5.327 respectively.

3. EFFECTS OF QUARK LOOPS

In order to address the effects of the fermion
determinant, let compare our ma = 0.01 and
0.025 results in greater detail. We find that
even when comparing the quantity 〈ζ̄ζ〉 evaluated
over the entire range of mζ , the ma = 0.01 and
ma = 0.025 simulations can be made to agree
within a few percent if we allow for a quark-mass
dependent shift in β. In Figure 5 we show 〈ζ̄ζ〉
computed at β = 5.272, ma = 0.025 compared to
a group of ma = 0.01 results. The quite precise
5-6% agreement with the β = 5.255, ma = 0.01
curve over the entire mζ range is striking. Sim-
ilarly, for higher temperatures, Figure 6 shows
〈ζ̄ζ〉 computed at β = 5.327, ma = 0.025 com-
pared to ma = 0.01 results. Again, we see 5-6%
agreement with the β = 5.3, ma = 0.01 curve over
the entire mζ range. Thus, in both the chirally
symmetric and asymmetric phases, the change in
dynamical quark mass from 0.01 to 0.025 can be
quite accurately compensated by a simple shift in
β. No disparate effects on low or high eigenval-
ues are seen. The shift in β of 0.027 needed in
the high temperature phase is precisely the shift
in βc that we identified earlier when comparing

βc found in our 0.01 and 0.025 simulations.
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Figure 5. The quantity 〈ζ̄ζ〉 plotted as a func-
tion of mζ for β = 5.272 and ma = 0.025. It is
compared with ma = 0.01 results for three values
of β. The close agreement with the ma = 0.01,
β = 5.255 curve is evident.

It is interesting to note that the 0.017 shift in
β found in the low temperature regime is sub-
stantially smaller than the 0.027 shift needed at
high temperature. Thus, it is clearly incorrect to
describe the effects of quark loops as causing a
simple shift in β. At the least, that shift is itself
β-dependent.

4. QUENCHED CHIRAL TRANSITION

As has been discussed above, we have not seen
the effects of small eigenvalues for β > βc in our
ma = 0.01, full QCD simulations to the extent
expected, for example, from a model of dilute in-
stantons. In an attempt to enhance such possible
effects, we have repeated our calculation of 〈ζ̄ζ〉
for the pure gauge theory at and above the region

FIG. 1. Phase diagram for the standard SU(3)
Wilson gauge plus two-flavor staggered fermion
action showing the approximate Nt = 6 crossover
location (crosses and burst) as a function of gauge
coupling 6/g2 and quark mass amq. Data sample
points are indicated by octagons. FIG. 2. Chiral order parameters extrapolated in

quark mass squared.

We measure this susceptibility directly from the connected part of the f0 correlator: χconn =
∫

d4x 〈f0(0)f0(r)〉|conn,
while Chandrasekharan and Christ measure it by taking the derivative of 〈f0〉 with respect to the valence quark mass
[6]. Finally, a well-known Ward identity relates the pion susceptibility to the chiral order parameter [11]:

χπ = NfTa2/V
〈

Tr(M †M)−1
〉

= 〈f0〉 /(2mq). (8)

In practice we measure the order parameters (2) through

χSU(2)×SU(2) = 〈f0〉 /(2mq) − χconn − χdisc and χU(1) = 〈f0〉 /(2mq) − χconn (9)

The simulation consisted of a subset of configurations generated in an extensive study of the equation of state for
Nt = 6 and Nf = 2 at 6/g2 = 5.45 and quark masses amq = 0.0075, 0.01, 0.0125, 0.015, 0.02, and 0.025 [4,5]. This
parameter range lies in the high temperature phase slightly above the phase transition, as illustrated in Fig. 1, and
was selected to permit an extrapolation of the measured quantities to zero quark mass in the high temperature phase.
The simulation sample at each mass covered a molecular dynamics time span of at least 2000 time units with the first
400 omitted. Measurements were taken at intervals of at most 50 time units. The chiral order parameter 〈f0〉 ≡

〈

ψ̄ψ
〉

was measured using the random source method [12] with 33 random sources. These measurements, with care taken to
avoid biases inherent in the noisy source technique, in turn, provided an estimate of χdisc through the configuration
variance.

III. RESULTS AND CONCLUSIONS

Results are shown in Fig. 2 and table I. We have indicated a linear extrapolation in (amq)2. Because they are
closer to the crossover (Fig. 1), where curvature may be expected, we chose to exclude the two highest mass points
from the fit. The zero mass intercepts are

χSU(2)×SU(2) = 0.04(31) and χU(1) = 0.75(22) (10)

with χ2/df = 2.6/2 and 2.5/2 respectively. Fits to all points gave χSU(2)×SU(2) = −0.33(20) with χ2/df = 5.6/4 and
χU(1) = 0.81(11) with 2.7/4.

It is surprising that a fit of the same points to an expression linear in amq gives a result consistent with a zero
intercept for both order parameters: χSU(2)×SU(2) = 0.15(38) with χ2/df = 1.8/2 and χU(1) = 0.40(56) with 2.4/2. So
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FIG. 2. The quantity ω, which directly measures anomalous symmetry breaking, plotted versus
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Looking for U(1)A Restoration Prasad Hegde

depending on the type of correlator being integrated. Furthermore, the disconnected parts of the σ
and η ′ susceptibilities are equal to the disconnected susceptibilities χdisc and χ5,disc viz.

χσ ,disc =
〈

(ψψ)2
〉

−
〈

(ψψ)
〉2 ≡ χdisc and χη ′,disc =

〈

(ψγ5ψ)
2 〉≡ χ5,disc. (3.4)

The appropriate symmetry restoration gives rise to equalities among the different susceptibilities:

χπ = χδ + χdisc and χδ = χπ − χ5,disc.
[

SU(2)L×SU(2)R
]

(3.5a)
χπ = χδ and χδ + χdisc = χπ − χ5,disc.

[

U(1)A
]

. (3.5b)

The difference χπ−χδ must go to zero asU(1)A breaking is suppressed. Eq. (3.5a) tells us that this
difference equals χdisc once chiral symmetry is restored. Moreover, we see that chiral symmetry
restoration implies that χdisc = χ5,disc whereas axial symmetry restoration implies the opposite,
namely χdisc = −χ5,disc. Either way, when both chiral and axial symmetry are restored, one has
χdisc = 0= χ5,disc. In other words,U(1)A restoration is signaled by a vanishing disconnected chiral
susceptibility.

0

40

80

120

160

200

 140  150  160  170  180  190  200
T[MeV]

χdisc/T
2

χ5,disc/T
2

(χπ-χδ)/T
2

Figure 4: The susceptibilities χdisc, χ5,disc and χπ − χδ for each of the temperatures. All are very nearly
equal from T = 170 MeV onward. None of these susceptibilities vanishes for all the temperatures shown
here. The red and blue points have been horizontally displaced by ±1 MeV for clarity.

Fig. 4 plots these susceptibilities for each of the temperatures that we studied. Although the
equalities derived in Eqs. (3.5) are strictly valid only in the chiral limit, we see that χdisc, χ5,disc and
χπ − χδ are almost equal to each other from about 170 MeV onwards. Furthermore, none of these
susceptibilities is equal to zero even at T = 200 MeV, the highest temperature that we studied. If
we take Tc ≈ 160 MeV, this would seem to suggest thatU(1)A remains broken even at T ≈ 1.25Tc.

4. The Correlation with Topology

Let us take a closer look at the source of U(1)A violation. If we write the π and δ correlators
(Eqs. (3.1)) in terms of their left- and right-handed components, we get

Cδ/π(x) =
〈

uLdR(x)dRuL(0)+uRdL(x)dLuR(0)
〉

±
〈

uLdR(x)dLuR(0)+uRdL(x)dRuL(0)
〉

.
(4.1)
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This talk

give constraints to eigenvalue densities of 2-flavor overlap fermions, if chiral 
symmetry in QCD is restored at finite temperature.
discuss a behavior of singlet susceptibility using the constraints. 
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2. Overlap fermions

3. Constraints to eigenvalue densities

4. Discussions: singlet susceptibility 
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2. Overlap fermions
S = �̄[D �mF (D)]�, F (D) = 1� Ra

2
D

Ginsparg-Wilson relation

Action

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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Ward-Takahashi identities under “chiral” rotation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)
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2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R
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aD. Since the total derivative term in δS vanishes after x
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xO〉 = 0. (61)
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x, where
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c T c.
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Operators

�bSa = 2�abP a, �bP a = �2�abSa

�0Sa = �aS0 = 2P a, �0P a = �aP 0 = �2Sa

Sa =
�

d4xSa(x), P a =
�

d4xP a(x)

On1,n2,n3,n4 = (P a)n1(Sa)n2(P 0)n3(S0)n4 N =
�

i

ni, n1 + n2 = odd, n1 + n3 = odd

if the chiral symmetry is restored.lim
m�0

��aOn1,n2,n3,n4�m = 0

�a

2
On1,n2,n3,n4 = �n1On1�1,n2,n3,n4+1 + n2On1,n2�1,n3+1,n4 � n3On1,n2+1,n3�1,n4 + n4On1+1,n2,n3,n4�1



3. Constraints to eigenvalue densities
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Nf

mV
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R+L�m + Nf �I1�m �OA�m =
1
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m�0
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N=2

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)
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R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)
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3.3 Constraints at N = 2
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〈P 2

0 − S2
a〉m. (3.20)
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χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)
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lim
m�0
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O(mNf

�
V�2)

��A
1 �m = O(m2) 2nd constraint



N=3

3.4 Constraints at N = 3

We next consider the N = 3 case. WT identities at N = 3 are given by

〈O2001〉m → 0, 〈−O0201 + 2O1110〉m → 0, 〈O0021 + 2O1110〉m = 0,

〈−O0003 + 2O2001〉m → 0, 〈O0021 −O0201 + O1110〉m → 0, (3.29)

as m → 0. By combining these 3-pt functions, we obtain following 5 conditions in the large
volume limit.

χ1

V 2
= −N2

f

〈(
NR+L

mV
+ I1

)(
NR+L

m2V
− I2

)〉

m

→ 0 (3.30)

χ2

V 3
= N3

f

〈(
NR+L

mV
+ I1

)3
〉

m

→ 0 (3.31)

χ3

V
=

〈
−N2

f

N2
R−L

m3V
+ 2Nf

(
NR+L

m3V
+ I3

)〉

m

→ 0 (3.32)

χ4

V 2
= N3

f

〈(
NR+L

mV
+ I1

)
N2

R−L

m2V

〉

m

→ 0 (3.33)

χ5

V 2
=

〈
N2

f

m

(
NR+L

mV
+ I1

)(
NR+L

mV
− I1

)〉

m

→ 0, (3.34)

as m → 0. From the results in the previous subsection, it is easy to see

〈(NA
R+L)2〉m
m3V 2

= O(m),
〈NA

R+LI1〉m
m2V

= O(m2) (3.35)

〈NA
R+LI2〉m
mV

= O(m3), 〈I1I2〉m = O(m), (3.36)

〈(NA
R+L)3〉m
m3V 2

= O(m),
〈(NA

R+L)2I1〉m
m2V

= O(m2), 〈I3
1 〉A = O(m2), (3.37)

〈NA
R+LI2

1 〉m
mV

= O(m3), N2
f
〈Q(A)2〉m

m3V
= 2Nf

ρ̄1

m
, (3.38)

2Nf 〈I3〉m = 2Nf

[
π

2
〈ρA

0 〉m
m2

+
ρ̄1

m
+
π

4
〈ρA

2 〉m
]

(3.39)

〈NA
R+LQ(A)2〉m

m3V 2
= O(m),

〈I2
1 〉m
m

= O(m) (3.40)

〈Q(A)2I1〉m
m2V

= N2
fπ

〈Q(A)2ρA
0 〉m

m2V
,

〈(NA
R+L)2〉m
m3V 2

= O(m). (3.41)
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No additional constraints

Using these properties, we have

lim
m→0

lim
V →∞

χ1

V 2
= 0, (3.42)

lim
m→0

lim
V →∞

χ2

V 2
= 0, (3.43)

lim
m→0

lim
V →∞

χ3

V 4
= πNf lim

m→0

[
〈ρA

0 〉m
m2

+
2ρ̄1

mπ
+

〈ρA
2 〉m
2

]
, (3.44)

lim
m→0

lim
V →∞

χ4

V 4
= πN5

f lim
m→0

lim
V →∞

〈Q(A)2ρA
0 〉m

m2V
, (3.45)

lim
m→0

lim
V →∞

χ5

V 2
= 0. (3.46)

The condition for χ3 and the positivity give

〈ρA
0 〉m = O(m4), ρ̄1 = O(m2), 〈ρA

2 〉m = O(m2), (3.47)

which automatically leads to

〈Q(A)2ρA
0 〉m

m2V
= O(m2), (3.48)

so that lim
m→0

lim
V →∞

χ4

V 4
= 0. We finally obtain

〈ρA(λ)〉A = 〈ρA
3 〉A

|λ|3

3!
+ O(λ4) (3.49)

in the chiral limit.

3.5 Constraints at N = 4

3.6 Special constraints at general N

Before considering N = 3, 4 cases, we discuss constraints from an operator O(N)
a =

O1,0,0,N−1, whose non-singlet chiral WT identity becomes

−〈O0,0,0,N 〉m + (N − 1)〈O2,0,0,N−2〉m → 0, m → 0 (3.50)

The dominate contribution at large volume is given by

1
V N

〈SN
0 〉m = NN

f

〈{
NA

R+L

mV
+ I1

}N〉

m

+ O(V −1) → 0, m → 0 (3.51)

The positivity leads to

〈(NA
R+L)N 〉m
V N

=

{
O(mN+2) N = 2k

O(mN+1) N = 2k − 1
. (3.52)

Since this holds for all N and NA
R+L is independent on m, we conclude

lim
V →∞

〈NA
R+L〉m
V

= 0 (3.53)
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= 0
+ positivity

O(m)

��A
0 �m = O(m4), ��A

2 �m = O(m2) 3rd constraints

N=4

lim
m�0

��A(�)�m = lim
m�0

��A
3 �m

|�|3

3!
+ O(�4)

Final results



4. Discussion:Singlet susceptbility
Singlet susceptibility

���� = lim
V��

N2
f

m2V
�Q(A)2�m = (mNf

�
V�2)

lim
m�

���� = 0

singlet susceptibility becomes zero if the chiral symmetry is recovered at hight T.

This, however, does not mean U(1)_A symmetry is recovered at high T.

lim
m�

���� = 0 is necessary but NOT sufficient for the recovery of U(1)_A .

Future new constraints at N > 4 ?

eigenvalues of Dirac operator 
have a gap near zero ?

ρ(λ) = 0 at |λ| ≤ λc

ρ(λ)

|λ|λc


